This is the main, top-level wrapper for {outstandR}
.
Methods taken from
(Remiro‐Azócar et al. 2022)
.
Arguments
- AC.IPD
Individual-level patient data. Suppose between studies A and C.
- BC.ALD
Aggregate-level data. Suppose between studies B and C.
- strategy
Computation strategy function. These can be
strategy_maic()
,strategy_stc()
,strategy_gcomp_ml()
andstrategy_gcomp_stan()
- CI
Confidence interval; between 0,1
- ...
Additional arguments
Value
List of length 3 of statistics as a outstandR
class object.
Containing statistics between each pair of treatments.
These are the mean contrasts, variances and confidence intervals,
respectively.
References
Remiro‐Azócar A, Heath A, Baio G (2022). “Parametric G‐computation for compatible indirect treatment comparisons with limited individual patient data.” Res. Synth. Methods, 1–31. ISSN 1759-2879, doi:10.1002/jrsm.1565 , 2108.12208.
Examples
data(AC_IPD) # AC patient-level data
data(BC_ALD) # BC aggregate-level data
lin_form <- as.formula("y ~ X3 + X4 + trt*X1 + trt*X2")
# matching-adjusted indirect comparison
outstandR_maic <- outstandR(AC_IPD, BC_ALD, strategy = strategy_maic(formula = lin_form))
# simulated treatment comparison
outstandR_stc <- outstandR(AC_IPD, BC_ALD, strategy = strategy_stc(lin_form))
# G-computation with maximum likelihood
# outstandR_gcomp_ml <- outstandR(AC_IPD, BC_ALD, strategy = strategy_gcomp_ml(lin_form))
# G-computation with Bayesian inference
outstandR_gcomp_stan <- outstandR(AC_IPD, BC_ALD, strategy = strategy_gcomp_stan(lin_form))
#>
#> SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3.9e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.39 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 1: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 1: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 1: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 1: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 1: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.494 seconds (Warm-up)
#> Chain 1: 0.516 seconds (Sampling)
#> Chain 1: 1.01 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1.9e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 2: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 2: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 2: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 2: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 2: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 2: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 2: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.483 seconds (Warm-up)
#> Chain 2: 0.552 seconds (Sampling)
#> Chain 2: 1.035 seconds (Total)
#> Chain 2:
# Multiple imputation marginalization
outstandR_gcomp_stan <- outstandR(AC_IPD, BC_ALD, strategy = strategy_mim(lin_form))
#>
#> SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 2e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
#> Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
#> Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
#> Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
#> Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
#> Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
#> Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
#> Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.273 seconds (Warm-up)
#> Chain 1: 0.752 seconds (Sampling)
#> Chain 1: 1.025 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2.1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
#> Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
#> Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
#> Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
#> Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
#> Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
#> Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
#> Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
#> Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.251 seconds (Warm-up)
#> Chain 2: 0.799 seconds (Sampling)
#> Chain 2: 1.05 seconds (Total)
#> Chain 2: