Calculate draws of binary responses from posterior predictive distribution from the Bayesian G-computation method using Hamiltonian Monte Carlo.
Arguments
- strategy
A list specifying the model strategy, including:
- formula
A linear regression
formula
object.- family
A
family
object specifying the distribution and link function (e.g.,binomial
).- iter
Number of iterations for the MCMC sampling.
- warmup
Number of warmup iterations for the MCMC sampling.
- chains
Number of MCMC chains.
- ipd
Individual-level data
- ald
Aggregate-level data
Value
A list of \(y^*_A\) and \(y^*_C\) posterior predictions:
`0`
Posterior means for treatment group C.
`1`
Posterior means for treatment group A.
Examples
if (FALSE) { # \dontrun{
strategy <- list(
formula = outcome ~ treatment + age,
family = binomial(),
iter = 2000,
warmup = 500,
chains = 4
)
ipd <- data.frame(treatment = c(0, 1), outcome = c(1, 0), age = c(30, 40))
ald <- data.frame()
calc_gcomp_stan(strategy, ipd, ald)
} # }